Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
ssrn; 2023.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4464764

ABSTRACT

In December 2021, the U.S. Food and Drug Administration (FDA) granted emergency authorization for Paxlovid® as an antiviral treatment for COVID-19. Paxlovid® is composed of two tablets, nirmatrelvir and ritonavir. Dose adjustment is necessary in cases of renal insufficiency. The aim of present study is to establish a LC-MS/MS method for simultaneous determination of nirmatrelvir/ritonavir in human serum for therapeutic drug monitoring. Internal standard saquinavir was added in 25 μl human serum samples, and then the samples were precipitated with methanol. The analytes were separated by gradient elution on a C18 column, using a mobile phase of 0.1% formic acid-water and methanol, at a flow rate of 0.4 ml/min. The injection volume was 2 μl, and the analysis time was 5 min. The determination of the analytes was performed by electrospray ionization in positive mode by full mass monitoring. The detected ions of nirmatrelvir, ritonavir and saquinavir were m/z 500.24792, 721.32004 and 671.39155, respectively. The linear concentration range for nirmatrelvir was 78.13~20000 ng/ml, for ritonavir was 15.63~4000 ng/ml (r2>0.9900). The accuracy ranged from 87.45%~104.63%, and the intra-day and inter-day precision RSD was < 15%. The recovery of Nirmatrelvir ranged from 98.72%~109.83%, and that of ritonavir was 95.41%~112.36%. The matrix effect of Nirmatrelvir was 88.31%~97.73%, and that of ritonavir was 85.17%~103.05%. This method was used to measure the trough concentrations of nirmatrelvir/ritonavir in 17 patients. The trough concentration of nirmatrelvir was 1331.7~8352.5 ng/ml, and that of ritonavir was 53.4~1325.5 ng/ml, with large individual differences. The method is simple, sensitive, specific, and reproducible, and can be used for monitoring the blood concentration and pharmacokinetic study of nirmatrelvir/ritonavir in COVID-19 patients.


Subject(s)
COVID-19 , Renal Insufficiency
2.
Front Med (Lausanne) ; 8: 759568, 2021.
Article in English | MEDLINE | ID: covidwho-1581292

ABSTRACT

Coronavirus disease 2019 (COVID-19), a new form of acute infectious respiratory syndrome first reported in 2019, has rapidly spread worldwide and has been recognized as a pandemic by the WHO. It raised widespread concern about the treatment of psoriasis in this COVID-19 pandemic era, especially on the biologics use for patients with psoriasis. This review will summarize key information that is currently known about the relationship between psoriasis, biological treatments, and COVID-19, and vaccination-related issues. We also provide references for dermatologists and patients when they need to make clinical decisions. Currently, there is no consensus on whether biological agents increase the risk of coronavirus infection; however, current research shows that biological agents have no adverse effects on the prognosis of patients with COVID-19 with psoriasis. In short, it is not recommended to stop biological treatment in patients with psoriasis to prevent the infection risk, and for those patients who tested positive for SARS-CoV-2, the decision to pause biologic therapy should be considered on a case-by-case basis, and individual risk and benefit should be taken into account. Vaccine immunization against SARS-CoV-2 is strictly recommendable in patients with psoriasis without discontinuation of their biologics but evaluating the risk-benefit ratio of maintaining biologics before vaccination is mandatory at the moment.

3.
BMC Microbiol ; 21(1): 283, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1477261

ABSTRACT

BACKGROUND: The widespread use of shared bicycles has increased the demand and sanitary requirements for shared bicycles. Previous studies have identified potentially pathogenic bacteria on the surfaces of shared bicycles, but fungal communities have not been investigated. METHODS: We sampled shared-bicycle handles and saddles from five selected locations in a metropolis (Chengdu, China, n = 98) and used surrounding air deposition samples as controls (n = 12). Full-length ITS sequencing and multiple bioinformatic analyses were utilized to reveal fungal community structures and differences. RESULTS: Aspergillus was dominant on both the handles and saddles of shared bicycles, and Alternaria and Cladosporium were the most abundant families in the air samples. Significant differences in fungal community structures were found among the three groups. The handle samples contained higher abundances of Aureobasidium melanogenum and Filobasidium magnum than the saddle and air samples. The saddle samples had a higher abundance of Cladosporium tenuissimum than the other two sample types (P < 0·05). A higher abundance of fungal animal pathogens on shared-bicycle surfaces than in air by FUNGuild (P < 0·05). Moreover, the co-occurrence network of fungi on handles was more stable than that on saddles. CONCLUSION: There were more potential pathogens, including Aspergillus pseudoglaucus, Aureobasidium melanogenum, Kazachstania pintolopesii, Filobasidium magnum, Candida tropicalis, and Malassezia globose were found on shared bicycles than in air, suggesting that hands should not contact mucous membrane after cycling, especially in susceptible individuals, and hygiene management of shared bicycles should be given more attention by relevant organizations worldwide.


Subject(s)
Bicycling , Mycobiome , Air Microbiology , China , Cities , Cluster Analysis , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/pathogenicity , Humans
5.
Elife ; 102021 06 11.
Article in English | MEDLINE | ID: covidwho-1266916

ABSTRACT

In severe viral pneumonia, including Coronavirus disease 2019 (COVID-19), the viral replication phase is often followed by hyperinflammation, which can lead to acute respiratory distress syndrome, multi-organ failure, and death. We previously demonstrated that alpha-1 adrenergic receptor (⍺1-AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n = 18,547) and three cohorts with pneumonia (n = 400,907). Federated across two ARD cohorts, we find that patients exposed to ⍺1-AR antagonists, as compared to unexposed patients, had a 34% relative risk reduction for mechanical ventilation and death (OR = 0.70, p = 0.021). We replicated these methods on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to sensitivity analyses. These results highlight the urgent need for prospective trials testing whether prophylactic use of ⍺1-AR antagonists ameliorates lower respiratory tract infection-associated hyperinflammation and death, as observed in COVID-19.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/therapeutic use , Pneumonia, Viral/drug therapy , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/drug therapy , Aged , Aged, 80 and over , Doxazosin/therapeutic use , Humans , Male , Middle Aged , Pneumonia, Viral/mortality , Respiratory Distress Syndrome/mortality , Retrospective Studies , Sweden/epidemiology , Tamsulosin/therapeutic use , United States/epidemiology
6.
Front Med (Lausanne) ; 8: 637647, 2021.
Article in English | MEDLINE | ID: covidwho-1191692

ABSTRACT

Effective therapies for coronavirus disease 2019 (COVID-19) are urgently needed, and pre-clinical data suggest alpha-1 adrenergic receptor antagonists (α1-AR antagonists) may be effective in reducing mortality related to hyperinflammation independent of etiology. Using a retrospective cohort design with patients in the Department of Veterans Affairs healthcare system, we use doubly robust regression and matching to estimate the association between baseline use of α1-AR antagonists and likelihood of death due to COVID-19 during hospitalization. Having an active prescription for any α1-AR antagonist (tamsulosin, silodosin, prazosin, terazosin, doxazosin, or alfuzosin) at the time of admission had a significant negative association with in-hospital mortality (relative risk reduction 18%; odds ratio 0.73; 95% CI 0.63-0.85; p ≤ 0.001) and death within 28 days of admission (relative risk reduction 17%; odds ratio 0.74; 95% CI 0.65-0.84; p ≤ 0.001). In a subset of patients on doxazosin specifically, an inhibitor of all three alpha-1 adrenergic receptors, we observed a relative risk reduction for death of 74% (odds ratio 0.23; 95% CI 0.03-0.94; p = 0.028) compared to matched controls not on any α1-AR antagonist at the time of admission. These findings suggest that use of α1-AR antagonists may reduce mortality in COVID-19, supporting the need for randomized, placebo-controlled clinical trials in patients with early symptomatic infection.

7.
J Zhejiang Univ Sci B ; 21(8): 668-672, 2020.
Article in English | MEDLINE | ID: covidwho-324237

ABSTRACT

In December 2019, coronavirus disease 2019 (COVID-19), a new de novo infectious disease, was first identified in Wuhan, China and quickly spread across China and around the world. The etiology was a novel betacoronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Lu et al., 2020). On Mar. 11, 2020, World Health Organization (WHO) characterized COVID-19 as a global pandemic. As of Mar. 22, 2020, over 292 000 confirmed COVID-19 cases have been reported globally. To date, COVID-19, with its high infectivity, has killed more people than severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) combined (Wu and McGoogan, 2020).


Subject(s)
Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic , Tomography, X-Ray Computed , Adult , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Fever/virology , Humans , Lymphocyte Count , Male , Middle Aged , Pandemics , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL